
Rudolph 1

Bryson Rudolph

CPSC 6160

Final Project Report

1 May 2021

Introduction

My game, “Channels,” is a top-down, grid-based game centered around routing ships to

their proper destinations and staying alive as long as possible. Players (there can be up to two)

navigate along an island in the middle of the screen and modify the environment by using three

tools they can freely cycle between, the shovel, bucket, and mop. The island itself is

grid-based, but the players can move continuously and are not restricted to staying within tiles

(i.e., the player objects can “straddle” two different tiles at once if they position themselves in a

certain way).

The players share health points, which are displayed in the top left of the screen.

Making mistakes will deduct health (which are discussed below), while successfully routing

ships to their destination will add health. The final game score is simply the amount of time that

passed from the start of the game until losing, meaning it’s paramount to keep your health as

high as possible.

Game Mechanics

The most important component of this game centers around the ships, as they decide if

health gets deducted or added. They come in four different colors, red, blue, green, and yellow,

which correspond to each of the four sides of the screen (left side is red, right side is yellow,

etc.). Each ship’s destination is one of these sides of the screen; specifically, it is the side that is

the same color as the ship, and naturally, ships always spawn on a side that is not their

Rudolph 2

destination. However, ships are not intelligent and do not know how to navigate to their

destination. As such, the players have to modify the environment to “guide” them, such as

creating channels through the island itself. It is important to note that health is deducted if ships

arrive at a side that is not their destination. The action of, in a sense, terraforming the island is

carried out with the shovel and the bucket. The shovel removes tiles of sand while the bucket

places sand. However, the tools have to be used multiple times in a row on the same tile to fully

dig it up or fully place it down. In other words, sand tiles have different states of being

removed/added. If the player uses the shovel once on a normal sand tile, it will be partially dug.

If the shovel is used again, it will be dug to a higher degree, and the graphics will change to

reflect that different state. The same goes for the bucket; using the bucket once will not replace

the entire block to its normal, non-altered state. Currently, there are five different sand states.

All ships update on a fixed time step, which is currently ~eight seconds (and again, does

not affect the players’ movement or abilities). Each time step, every ship on the screen will

either move forwards in the direction they are facing or will rotate 90 degrees if a block of water

is not in their path. The caveat here is that ships cannot backtrack. In other words, if a ship

sees an obstacle in front of it, to the right of it, and to the left of it, it will explode (which removes

health points). After exploding, the leftover hull will remain in the world and cannot be removed

by players, which adds another level of difficulty as the game lasts longer and longer.

Furthermore, during each time step there is a chance another ship will spawn in an empty space

on one of the sides of the screen as long as the current number of ships on the screen has not

exceeded the maximum (if the numShips < 50% of maxShips, the “chance” will be 100%).

An important mechanic deals with the last tool, with that being the mop. If a ship passes

through the original boundaries of the island, it will leave a trail of oil. By using the mop, the

player can remove the oil, which is critical since health points are deducted if a ship has to pass

through it (as they will not actively avoid it).

Rudolph 3

Challenges

For the most part, development went along relatively smoothly. However, there were

certainly some aspects of the game that required a good deal of thought. For example, figuring

out how to detect the correct tile for player objects when they use their tool was not trivial, as not

only can players orient themselves such that they straddle more than one tile but they also have

different facing directions. As such, I had to do a lot of testing to make sure the tile that was

“chosen” by the player made sense, even with these edge cases.

Perhaps the biggest challenge was getting all ship mechanics working correctly and in a

manner that felt fair, simply because there were a lot of considerations that had to be taken into

account. For example, spawning in a ship requires multiple conditions to be met, from making

sure currentShips < maxShips to making sure they don’t spawn in their own destination location

to making sure they don’t spawn in a tile where a previous ship spawned the previous turn (else

that could seem unfair to players). After spawning, the ships’ behavior had to be figured out as

well. I wanted ships to be “dumb,” else the game would certainly be a lot easier and could be

played in a way that I wasn’t anticipating (e.g., if ships always turn correctly to get to their

destination, what’s stopping players from just removing the entire island save for a couple of

blocks where they are standing and letting the ships navigate on their own?). At first, this may

seem easy (as it didn’t require implementing complex A.I.), but getting the ships to the right level

of “dumbness” certainly took time to test to figure out what worked the best.

Another challenge that I faced much earlier on was just the general design of the game

itself. At first, I started developing the game such that all ships were the same and all players

had to do was route them to any of the existing sides. However, I quickly realized this design

could be abused. Since ships will automatically turn (as long as they have an open spot on one

of their sides, minus the spot behind them), players could literally do nothing and the ships

would reach the island edge, turn, and continue until successfully reaching a side. In fact,

Rudolph 4

players were discouraged from doing an action that I really wanted them to do, which was

building channels through the island through which ships could pass. It made no sense to dig

these channels, however, since again ships turn on their own and ships passing through the

island leave oil trails that have to be cleaned up.

There was also a mechanic that I originally planned to add to the game but I couldn’t get

it working. Currently, when a player completely digs up a sand tile, water is found underneath. I

originally planned on making it such that digging up a sand tile that is surrounded on all sides by

sand tiles would just make a dry hole in the ground. Then, if a player makes a long line of sand

holes and digs up a final tile that is next to water, water would flow into the hole tiles, thus filling

them up. I thought this could be fun, because you could have an intense scenario when a ship

is moving along a channel and the water hasn’t completely filled up the entire channel yet. I

made a recursive algorithm to handle this logic (wherein on each new sand hole it checks

around itself to see if a water tile is present, and then it follows the path of holes if one exists),

but I couldn’t get it properly working in time.

Future/Next Steps

Probably the biggest next step would be to balance the game. Currently, the game

works decently well in regards to the time step and ship spawn rate logic, but it can certainly be

improved, especially with the two player mode. The game does increase the max number of

ships that can spawn in the two player mode to make it more difficult, but more testing will still

be required as most of my testing was naturally in the single player mode.

Other next steps that I’d like to take are improving the graphics and animations, namely

with the static-image ships, since each time they move they jump forward an entire tile. I think

it’d certainly look much better if the ships moved forward at a continuous rate. Furthermore, the

players do not have any animations other than an idle animation, so adding a run animation as

well as specific animations for each tool would be beneficial. Adding particle systems would be

Rudolph 5

nice as well, such as when a ship explodes or when a ship successfully reaches its destination.

I’d also like to make the ocean more alive, as currently it’s just a flat static color.

On another note, the world map currently is the same each round. I would like to not

only add more maps, but more randomness in the maps as well. For example, I think I’d like the

basic tile types to remain unchanged with each new map that I manually create (meaning if a tile

is sand or water), but I’d like to add randomness such that certain blocks of sand are already

partially dug and oil is placed randomly across the map. I feel like that would increase the

replayability quite a bit.

Optimizations can certainly be added as well. Currently, the world is represented as two

2D arrays. One array contains information regarding the specific tile, be that sand, water, a

ship, etc. The other array contains information as to if that tile is covered in oil or clean.

Naturally, having to traverse two 2D arrays is not optimal. The simplest solution that I could

think of that I’d like to implement is storing everything in just one 2D array. In order to preserve

information as to if the tile is dirty or not, I envision appending decimal values to each element in

the array (e.g., .0 indicates the tile is clean, .1 indicates the tile has a little bit of oil, etc.). This

modification would certainly improve performance.

Closing

In conclusion, my final project “Channels” is a functional C++/SDL game best

experienced with two people that is chaotic, challenging, and requires on-your-feet thinking. It is

based around terraforming an island to guide ships to their proper destination, as well as

cleaning up the oily mess ships leave behind. Even though it works and feels at least

somewhat balanced, it requires more testing to improve the experience (such as with ship

spawn rates/timing). It could also use graphical/animation updates/additions, more maps, and

performance optimizations.

